Crops News

Measuring electric current in soil could provide answers on soil health

Published:

Washington State University researchers have developed a way to assess soil health by measuring the electric current produced by its tiniest microbes.

The team used a probe originally developed to measure the electrochemical signal of microbes in aquatic environments, and tested it on healthy and unhealthy soil samples to measure microbial metabolism and other indicators of soil health. This proof-of-concept research, published in Journal of Electrochemical Society, could someday lead to a simple, real-time test for farmers to determine whether soil is productive.

“Soil underpins all the food we eat, and most of it is degraded worldwide,” said Maren Friesen, an associate professor in the Departments of Plant Pathology and Crop and Soil Sciences and a co-author on the study. “One of the biggest barriers to improving soils is not being able to have rapid, real-time measurement to develop appropriate management strategies for them. This sensor has the potential to be able to do real-time measurements not just of the structure of the soil but how it’s actually functioning. It would be a huge advance in the field.”

Soil health is critically important to agriculture and crop success worldwide, but measuring it is not straightforward. Farmers and researchers use soil chemistry, nutrient analysis, texture and pH measurements to gain understanding of soil’s physical and chemical properties. While that information can be valuable, it doesn’t always reflect how productive the soil actually is.

That’s because a key to soil productivity is how microbes function, said Friesen. Billions of bacteria, fungi and other organisms play critical roles in nutrient mobilization and provisioning, defense against pathogens and plant growth. But, until now, there has been no simple, real-time way to measure the microbial activity.

“What makes a soil beneficial for a plant is that it is alive and contains all these bacteria and fungi,” she said.

» Related: Difference between soil tests and soil health tests

In the new paper, the WSU research team was able to measure current through the soil to determine microbial activity, and distinguish healthy and unhealthy soils.

The researchers used a probe that they developed a few years ago to measure the electrochemical signal of microbes in aquatic environments. Similar to how humans eat and breathe, microorganisms take in food and then use electrons liberated during metabolism for their energy. Finally, microbes give these electrons to an acceptor molecule such as oxygen. The probe the team developed replaces these acceptor molecules with an electrode. Using this electrode, they can then measure the electric current and get an idea of the magnitude of microbial activity.

“We are able to measure metabolic rate of the microbes by capturing electrons that are released as a part of metabolism,” said Abdelrhman Mohamed, a postdoctoral researcher in the Voiland School. “We’re watching the microbes breathe in the soil.”

The two soil samples the researchers used were collected from the R.J. Cook Agronomy Farm and looked nearly identical to each other in terms of their soil composition. They were both collected from plots that had not been tilled, were relatively high in organic matter, and had the same pH and soil type. But, the researchers had data showing that one of the soils had been significantly more productive in its wheat yield than the other.

The researchers found that the more productive soil produced an electric current while the less productive soil produced almost no current — about 1 percent of the more productive soil.

They also found another difference between the two soils in the open circuit potential measured in the soil. When they added sugar to stimulate metabolic activity, the researchers also observed the electrochemical signals change in the healthy and unhealthy soil samples converging, which suggests that the sugar addition stimulated the microbial activity in both soil types.

With just the two soil samples compared initially, the researchers say their idea is still just a proof of concept. They have many additional questions, such as what the creatures are doing to generate current and what specific microorganisms might be in the samples to create productive soil.

Sponsored Content on AGDaily
Any views or opinions expressed in this article are those of the author and do not reflect those of AGDAILY. Comments on this article reflect the sole opinions of their writers.